

#### **Features**

- Trench Power LV MOSFET Technology
- Excellent Package for Heat Dissipation
- High Density Cell Design for Low RDS(ON)
- Moisture Sensitivity Level 3
- Halogen Free. "Green" Device (Note 1)
- Epoxy Meets UL 94 V-0 Flammability Rating
- Lead Free Finish/RoHS Compliant ("P" Suffix Designates RoHS Compliant. See Ordering Information)

# **Maximum Ratings**

- Operating Junction Temperature Range : -55°C to +150°C
- Storage Temperature Range: -55°C to +150°C
- Thermal Resistance: 50°C/W Junction to Ambient(Note2)
- Thermal Resistance: 1.5°C/W Junction to Case

| Parameter                                         |                       | Symbol           | Rating | Unit |  |
|---------------------------------------------------|-----------------------|------------------|--------|------|--|
| Drain-Source Voltage                              |                       | V <sub>DS</sub>  | -40    | V    |  |
| Gate-Source Volltage                              |                       | V <sub>GS</sub>  | ±20    | V    |  |
| Continuous Drain Current                          | T <sub>C</sub> =25°C  |                  | -50    | А    |  |
|                                                   | T <sub>C</sub> =100°C | - I <sub>D</sub> | -31    |      |  |
| Pulsed Drain Current <sup>(Note3)</sup>           |                       | I <sub>DM</sub>  | -200   | Α    |  |
| Total Power Dissipation <sup>(Note4)</sup>        |                       | P <sub>D</sub>   | 83     | W    |  |
| Single Pulsed Avalanche Energy <sup>(Note5)</sup> |                       | E <sub>AS</sub>  | 100    | mJ   |  |

#### Note:

- 1. Halogen free "Green" products are defined as those which contain <900ppm bromine, <900ppm chlorine (<1500ppm total Br + Cl) and <1000ppm antimony compounds.
- 2. The value of  $R_{\theta,JA}$  is measured with the device mounted on  $1in^2$  FR-4 board with 2oz. Copper, in a still air environment with  $T_A$  =25°C.
- 3. Repetitive rating; pulse width limited by max. junction temperature.
- 4.  $\ensuremath{P_{D}}$  is based on max. junction temperature, using junction-case thermal resistance.
- 5.  $V_{DD}$ =-30V,  $V_{GS}$ = -10V, L= 0.5mH

# **Internal Structure and Marking Code**





# P-CHANNEL MOSFET

# DPAK(TO-252)



- Gate
- 2,4. Drain
  - 3. Source

|       | DIMENSIONS |       |      |       |      |  |
|-------|------------|-------|------|-------|------|--|
| DIM   | INCHES     |       | MM   |       | NOTE |  |
| DIIVI | MIN        | MAX   | MIN  | MAX   | NOTE |  |
| Α     | 0.087      | 0.094 | 2.20 | 2.40  |      |  |
| В     | 0.000      | 0.005 | 0.00 | 0.13  |      |  |
| С     | 0.026      | 0.034 | 0.66 | 0.86  |      |  |
| D     | 0.018      | 0.023 | 0.46 | 0.58  |      |  |
| Е     | 0.256      | 0.264 | 6.50 | 6.70  |      |  |
| F     | 0.201      | 0.215 | 5.10 | 5.46  |      |  |
| G     | 0.190      |       | 4.83 |       | TYP. |  |
| Н     | 0.236      | 0.244 | 6.00 | 6.20  |      |  |
| I     | 0.086      | 0.094 | 2.18 | 2.39  |      |  |
| J     | 0.386      | 0.409 | 9.80 | 10.40 |      |  |
| K     | 0.114      |       | 2.90 |       | TYP. |  |
| L     | 0.055      | 0.067 | 1.40 | 1.70  |      |  |
| M     | 0.063      |       | 1.60 |       | TYP. |  |
| 0     | 0.043      | 0.051 | 1.10 | 1.30  |      |  |
| Q     | 0.000      | 0.012 | 0.00 | 0.30  |      |  |
| V     | 0.211      |       | 5.35 |       | TYP. |  |



# Electrical Characteristics @ 25°C (Unless Otherwise Specified)

| Drain-Source Breakdown Voltage   V <sub>(BR)DSS</sub>   V <sub>GS</sub> =0V, I <sub>D</sub> =-250μA   -40   V   NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Parameter                       | Symbol               | Test Conditions                               | Min  | Тур   | Max  | Unit  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|----------------------|-----------------------------------------------|------|-------|------|-------|--|
| Searce   Courtee   Cour                                                                                                                                 | Static Characteristics          |                      |                                               | '    |       | 1    |       |  |
| Zero Gate Voltage Drain Current $I_{DSS}$ $V_{DS}=-40V$ , $V_{GS}=0V$ -1 $\mu A$ Gate-Threshold Voltage $V_{OS}(m)$ $V_{DS}=V_{OS}$ , $I_D=-250\mu A$ -1.0-1.4-2.5 $V$ Drain-Source On-Resistance $R_{DS}(m)$ $V_{OS}=-10V$ , $I_D=-20A$ 1015 $m\Omega$ Gate Resistance $R_g$ $F=1$ MHz, Open drain9 $\Omega$ Diode CharacteristicsContinuous Body Diode Current $I_S$ $I_S=-20A$ -1.2 $V$ Diode Forward Voltage $V_{SD}$ $V_{OS}=0V$ , $I_S=-20A$ -1.2 $V$ Reverse Recovery Time $I_T$ $I_T=-4A$ , $I_T=-4A$                                                                                                                                                                                                                                                                                                                                                                                   | Drain-Source Breakdown Voltage  | V <sub>(BR)DSS</sub> | V <sub>GS</sub> =0V, I <sub>D</sub> =-250μA   | -40  |       |      | V     |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Gate-Source Leakage Current     | I <sub>GSS</sub>     | V <sub>DS</sub> =0V, V <sub>GS</sub> =±20V    |      |       | ±100 | nA    |  |
| Drain-Source On-Resistance $R_{DS(on)}$ $V_{GS}=-10V$ , $I_D=-20A$ 10         15 $m\Omega$ Gate Resistance         R <sub>g</sub> F=1 MHz, Open drain         9         Ω           Diode Characteristics         Continuous Body Diode Current         I <sub>s</sub> -50         A           Diode Forward Voltage         V <sub>SD</sub> V <sub>GS</sub> =0V, I <sub>S</sub> =-20A         -1.2         V           Reverse Recovery Time         t <sub>r</sub> I <sub>F</sub> =-4A, dI <sub>F</sub> /dt=100A/μs         51         ns           Reverse Recovery Charge         Q <sub>rr</sub> 41         nC           Dynamic Characteristics           Input Capacitance         C <sub>iss</sub> V <sub>DS</sub> =-30V,V <sub>GS</sub> =0V,f=1MHz         224         pF           Reverse Transfer Capacitance         C <sub>rss</sub> 198         198         198           Total Gate Charge         Q <sub>g</sub> 75         8         nC           Gate-Source Charge         Q <sub>g</sub> 15         15         15           Turn-On Delay Time         t <sub>d</sub> V <sub>DD</sub> =-20V, V <sub>GS</sub> =-10V, R <sub>GEN</sub> =20V, V <sub>GS</sub> =-10V, R <sub>GEN</sub> =3Ω, I <sub>DS</sub> =-4A         200         15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Zero Gate Voltage Drain Current | I <sub>DSS</sub>     | V <sub>DS</sub> =-40V, V <sub>GS</sub> =0V    |      |       | -1   | μA    |  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Gate-Threshold Voltage          | V <sub>GS(th)</sub>  | $V_{DS}=V_{GS}$ , $I_{D}=-250\mu A$           | -1.0 | -1.4  | -2.5 | V     |  |
| V <sub>GS</sub> =-4.5V, I <sub>D</sub> =-15A   12   20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Drain Course On Registeres      | Regul                | $V_{GS}$ =-10V, $I_{D}$ =-20A                 |      | 10 15 |      | mΩ    |  |
| Diode Characteristics         Continuous Body Diode Current         I <sub>S</sub> -50         A           Diode Forward Voltage         V <sub>SD</sub> V <sub>GS</sub> =0V, I <sub>S</sub> =-20A         -1.2         V           Reverse Recovery Time         t <sub>rr</sub> I <sub>F</sub> =-4A, dI <sub>F</sub> /dt=100A/μs         51         ns           Reverse Recovery Charge         Q <sub>rr</sub> 41         nC           Dynamic Characteristics           Input Capacitance         C <sub>Iss</sub> 3302         P           Output Capacitance         C <sub>rss</sub> 198         P           Reverse Transfer Capacitance         C <sub>rss</sub> 198         P           Total Gate Charge         Q <sub>g</sub> 75         P           Gate-Source Charge         Q <sub>g</sub> 75         P           Gate-Source Charge         Q <sub>gd</sub> 15         T           Turn-On Delay Time         t <sub>r</sub> V <sub>DD</sub> =-20V, V <sub>GS</sub> =-10V,                                                                                                                                                                                    | Drain-Source On-Resistance      | DS(on)               | $V_{GS}$ =-4.5V, $I_{D}$ =-15A                |      | 12    | 20   | 11122 |  |
| Continuous Body Diode Current $I_S$ $V_{SD}$ $V_{GS}=0V, I_S=-20A$ $-1.2$ $V$ Reverse Recovery Time $t_{rr}$ $I_F=-4A, dI_F/dt=100A/\mu s$ $-1.2$ $V$ $-1.2$ $V$ Reverse Recovery Charge $I_F=-4A, dI_F/dt=100A/\mu s$ $-1.2$ $V$ $-1.2$ $-1.2$ $V$                                                                                                                             | Gate Resistance                 | $R_g$                | F=1 MHz, Open drain                           |      | 9     |      | Ω     |  |
| Diode Forward Voltage $V_{SD}$ $V_{GS}=0V$ , $I_S=-20A$ $-1.2$ $V$ Reverse Recovery Time $t_{rr}$ Reverse Recovery Charge $Q_{rr}$ $I_F=-4A$ , $dI_F/dt=100A/\mu s$ $-1.2$ $V$ $-1.$                                                                                                                          | Diode Characteristics           |                      |                                               |      |       |      |       |  |
| Reverse Recovery Time $t_{rr}$                                                                                                                              | Continuous Body Diode Current   | Is                   |                                               |      |       | -50  | Α     |  |
| Reverse Recovery Charge $Q_{rr}$ $I_F=-4A$ , $dI_F/dt=100A/\mu s$ 41 nC Dynamic Characteristics  Input Capacitance $C_{iss}$ $V_{DS}=-30V, V_{GS}=0V, f=1MHz$ 224 pF Reverse Transfer Capacitance $Q_g$ Total Gate Charge $Q_g$ $V_{DS}=-20V, V_{GS}=-10V, I_D=-4A$ 8 nC Gate-Drain Charge $Q_{gd}$                                                                                                                              | Diode Forward Voltage           | V <sub>SD</sub>      | V <sub>GS</sub> =0V, I <sub>S</sub> =-20A     |      |       | -1.2 | V     |  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Reverse Recovery Time           | t <sub>rr</sub>      | I = 4A dI /dt=100A/us                         |      | 51    |      | ns    |  |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Reverse Recovery Charge         | Q <sub>rr</sub>      | 1=-4Λ, αιε/αι-100Λ/μ5                         |      | 41    |      | nC    |  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Dynamic Characteristics         |                      |                                               |      |       |      |       |  |
| Reverse Transfer Capacitance $C_{rss}$ 198  Total Gate Charge $Q_g$ 75  Gate-Source Charge $Q_{gs}$ $V_{DS}$ =-20V, $V_{GS}$ =-10V, $I_D$ =-4A  8 nC  Gate-Drain Charge $Q_{gd}$ 15  Turn-On Delay Time $t_{d(on)}$ 7.5  Turn-On Rise Time $t_r$ $V_{DD}$ =-20V, $V_{GS}$ =-10V, $V_{DS}$ = | Input Capacitance               | C <sub>iss</sub>     |                                               |      | 3302  |      |       |  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Output Capacitance              | C <sub>oss</sub>     | $V_{DS}$ =-30V, $V_{GS}$ =0V,f=1MHz           |      | 224   |      | pF    |  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Reverse Transfer Capacitance    | C <sub>rss</sub>     |                                               |      | 198   |      |       |  |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Total Gate Charge               | Qg                   |                                               |      | 75    |      |       |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Gate-Source Charge              | Q <sub>gs</sub>      | $V_{DS}$ =-20V, $V_{GS}$ =-10V, $I_{D}$ =-4A  |      | 8     |      | nC    |  |
| Turn-On Rise Time $t_r$ $V_{DD}$ =-20V, $V_{GS}$ =-10V, $t_{d(off)}$ $V_{DD}$ =-24A $t_{d(off)}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Gate-Drain Charge               | $Q_{gd}$             |                                               |      | 15    |      |       |  |
| Turn-Off Delay Time $t_{d(off)}$ $R_{GEN}=3\Omega, I_{DS}=-4A$ 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Turn-On Delay Time              | t <sub>d(on)</sub>   |                                               |      | 7.5   |      |       |  |
| Turn-Off Delay Time $t_{d(off)}$ $R_{GEN}=3\Omega, I_{DS}=-4A$ 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Turn-On Rise Time               | t <sub>r</sub>       | V <sub>DD</sub> =-20V, V <sub>GS</sub> =-10V, |      | 4.2   |      | ,     |  |
| Turn-Off Fall Time t <sub>f</sub> 70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Turn-Off Delay Time             | t <sub>d(off)</sub>  | $R_{GEN}=3\Omega$ , $I_{DS}=-4A$              |      | 200   |      | 1115  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Turn-Off Fall Time              | t <sub>f</sub>       |                                               |      | 70    |      |       |  |



#### **Curve Characteristics**















# **Curve Characteristics**













### **Curve Characteristics**







# **Ordering Information**

| Device         | Packing                 |  |
|----------------|-------------------------|--|
| Part Number-TP | Tape&Reel: 2.5Kpcs/Reel |  |

#### \*\*\*IMPORTANT NOTICE\*\*\*

**Micro Commercial Components Corp.** reserves the right to make changes without further notice to any product herein to make corrections, modifications, enhancements, improvements, or other changes. **Micro Commercial Components Corp.** does not assume any liability arising out of the application or use of any product described herein; neither does it convey any license under its patent rights, nor the rights of others. The user of products in such applications shall assume all risks of such use and will agree to hold **Micro Commercial Components Corp.** and all the companies whose products are represented on our website, harmless against all damages. **Micro Commercial Components Corp.** products are sold subject to the general terms and conditions of commercial sale, as published at

## https://www.mccsemi.com/Home/TermsAndConditions.

#### \*\*\*LIFE SUPPORT\*\*\*

MCC's products are not authorized for use as critical components in life support devices or systems without the express written approval of Micro Commercial Components Corporation.

#### \*\*\*CUSTOMER AWARENESS\*\*\*

Counterfeiting of semiconductor parts is a growing problem in the industry. Micro Commercial Components (MCC) is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. MCC strongly encourages customers to purchase MCC parts either directly from MCC or from Authorized MCC Distributors who are listed by country on our web page cited below. Products customers buy either from MCC directly or from Authorized MCC Distributors are genuine parts, have full traceability, meet MCC's quality standards for handling and storage. MCC will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. MCC is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.